Wavelet-based parametric functional mapping of developmental trajectories with high-dimensional data.

نویسندگان

  • Wei Zhao
  • Hongying Li
  • Wei Hou
  • Rongling Wu
چکیده

The biological and statistical advantages of functional mapping result from joint modeling of the mean-covariance structures for developmental trajectories of a complex trait measured at a series of time points. While an increased number of time points can better describe the dynamic pattern of trait development, significant difficulties in performing functional mapping arise from prohibitive computational times required as well as from modeling the structure of a high-dimensional covariance matrix. In this article, we develop a statistical model for functional mapping of quantitative trait loci (QTL) that govern the developmental process of a quantitative trait on the basis of wavelet dimension reduction. By breaking an original signal down into a spectrum by taking its averages (smooth coefficients) and differences (detail coefficients), we used the discrete Haar wavelet shrinkage technique to transform an inherently high-dimensional biological problem into its tractable low-dimensional representation within the framework of functional mapping constructed by a Gaussian mixture model. Unlike conventional nonparametric modeling of wavelet shrinkage, we incorporate mathematical aspects of developmental trajectories into the smooth coefficients used for QTL mapping, thus preserving the biological relevance of functional mapping in formulating a number of hypothesis tests at the interplay between gene actions/interactions and developmental patterns for complex phenotypes. This wavelet-based parametric functional mapping has been statistically examined and compared with full-dimensional functional mapping through simulation studies. It holds great promise as a powerful statistical tool to unravel the genetic machinery of developmental trajectories with large-scale high-dimensional data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Massively parallel nonparametric regression, with an application to developmental brain mapping.

We propose a penalized spline approach to performing large numbers of parallel non-parametric analyses of either of two types: restricted likelihood ratio tests of a parametric regression model versus a general smooth alternative, and nonparametric regression. Compared with naïvely performing each analysis in turn, our techniques reduce computation time dramatically. Viewing the large collectio...

متن کامل

Wavelet-Based Statistical Analysis in Functional Neuroimaging

Wavelet-based analysis versus Gaussian smoothing in statistical parametric mapping (SPM) for detecting and analyzing brain activity from functional magnetic resonance imaging (fMRI) data is presented. Detection of activation in fMRI data can be performed in the wavelet domain by a coefficient-wise statistical t-test. The link between the wavelet analysis and SPM is based on two observations: (i...

متن کامل

Statistical Parametric Mapping of Functional MRI data Using Spectral Graph Wavelets

In typical statistical parametric mapping (SPM) of fMRI data, the functional data are pre-smoothed using a Gaussian kernel to reduce noise at the cost of losing spatial specificity. Wavelet approaches have been incorporated in such analysis by enabling an efficient representation of the underlying brain activity through spatial transformation of the original, un-smoothed data; a successful fram...

متن کامل

Human Gait Control Using Functional Electrical Stimulation Based on Controlling the Shank Dynamics

Introduction: Efficient gait control using Functional Electrical Stimulation (FES) is an open research problem. In this research, a new intermittent controller has been designed to control the human shank movement dynamics during gait. Methods: In this approach, first, the three-dimensional phase space was constructed using the human shank movement data recorded from the healthy subjects. Then...

متن کامل

Wavelet-Based Statistical Analysis versus SPM of Brain Imaging Data

Analysis of functional magnetic resonance imaging (fMRI) data of a block-based visual stimulation paradigm was comparatively performed by the discrete wavelet transform (DWT) in the wavelet domain and statistical parametric mapping (SPM) within the framework of the general linear model (GLM) [1]. The link is supported by the low-pass analysis filter of the DWT that can be similarly shaped to a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 176 3  شماره 

صفحات  -

تاریخ انتشار 2007